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Analytics database workloads often contain queries that are executed repeatedly. Existing optimization
techniques generally prioritize keeping optimization cost low, normally well below the time it takes to execute
a single instance of a query. If a given query is going to be executed thousands of times, could it be worth
investing significantly more optimization time? In contrast to traditional online query optimizers, we propose
an offline query optimizer that searches a wide variety of plans and incorporates query execution as a primitive.
Our offline query optimizer combines variational auto-encoders with Bayesian optimization to find optimized
plans for a given query. We compare our technique to the optimal plans possible with PostgreSQL and recent
RL-based systems over several datasets, and show that our technique finds faster query plans.
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1 Introduction
Query optimization is a long-standing problem in the database community [3, 46, 52]. Recent
advancements in learned query optimization (LQO) [8, 9, 39, 58, 66, 70, 95, 98, 99, 104, 106] have
shown significant promise, often delivering 2-10x improvements in query runtime. However,
deploying LQO is complicated due to two main challenges: (1) query regressions (“my query was
fast yesterday, why is it slow today?”) and (2) the tight integration of machine learning components
into the core query processing pipeline (which are generally engineered with different levels of
reliability in mind).
Despite various efforts to address these challenges [56, 92], most real-world deployments of

LQO (such as at Meta [1], Microsoft [67, 100], and Alibaba [91, 105]) have separated learned
query optimization two components, an offline component and an online component. The offline
component tests new query plans and caches those plans that perform better than the plans produced
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RL seeks to minimize the 
shaded area: the latency 
(negative reward) over time.

BO seeks to minimize the 
best latency (objective) seen 
after a fixed amount of time.

Fig. 1. A comparison of reinforcement learning (RL, left) and Bayesian optimization (BO, right). BO is a better
match for the offline query optimization problem because we do not care about “regressions” in the offline
search phase; we only care about the quality of the best-discovered plan.

by the traditional optimizer. The online component then checks this cache for a plan; if a cached
plan is not found, it calls the traditional optimizer instead.
This compromise—spending additional resources offline to find good query plans for specific

queries—solves issues with query regressions and avoids the need to put ML primitives into
the query processing pipeline, but it is also motivated by the nature of analytic workloads. In
many analytic systems, the majority of compute resources are spent executing repetitive report
generation [55] or dashboarding queries [75], with some queries being executed hundreds of
times per day [94] or hundreds of thousands of times per year [55]. Recent studies of Amazon
Redshift showed that, for the median database, 60% of all queries executed were repeated queries
(verbatim) [94] and that roughly 10% of all Redshift clusters have their entire workload consisting
of queries that repeated within the last day [87].1 Substantial repetition means that even a small
improvement in query latency can be amplified many times over, making it worthwhile to invest
additional optimization resources.

We call the goal of these offline components the offline query optimization problem: find the
best query plan using as few offline resources (i.e., offline query time) as possible. Unlike traditional
query optimizers, which generally seek to be so fast that optimization time amortizes to zero
compared to execution time, an offline query optimizer is expected to take many times longer than
a single query execution.

Learned query optimizers using the “offline/online” compromise are implicitly performing offline
query optimization. Current systems must solve two fundamental problems: first, offline query
optimizers must have a search strategy to decide which plans to test. Second, offline query optimizers
must have a timeout strategy to deal with query plans that take too long to execute.
Search strategy Existing techniques either use a coarse-grained search of predefined alternative
plans [1, 100], or adopt a fine-grained reinforcement learning procedure [91, 105]. The biggest
drawback of the coarse-grained approach is that the set of plans explored is limited, and significant
improvements may be outside of the search space. The drawback of the RL approach is more subtle.
Reinforcement learning (RL) is fundamentally the “wrong tool for the job” of offline query op-

timization. Specifically, the objective function of reinforcement learning is poorly aligned with
offline query optimization. Consider the latency of the best plan found for a query over time as
the query is optimized, as depicted on the left side of Figure 1. RL seeks to minimize the shaded
area, representing latency (negative reward) over time. This corresponds to balancing exploration
and exploitation [80]: the optimizer is penalized each time it chooses a bad plan, so the optimizer
must frequently choose “lower risk” plans that lower the area under the curve, but might not
be as informative as “higher risk” plans. This is perfectly aligned with the goals of online query

1Some unknown proportion of these verbatim repeats may involve staging tables or views, for which the underlying query
may be changing.
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optimization. However, in the context of offline query optimization, we actually care about the best
query plan observed during the time-bounded optimization phase (that is, the minimum of the
plotted function, not the area under the curve), as shown on the right side of Figure 1.
Trouble with timeouts An important, but often overlooked, dimension of learned query optimiza-
tion is query timeouts: since some query plans are orders of magnitude worse than others [46], any
learned query optimizer (either online or offline) has a non-zero chance of hitting a poor-performing
plan. Current approaches solve this fundamental dilemma in ad-hoc ways, often by “timing out”
(termination prior to completion) proposed query plans after a fixed threshold. These timed-out
values are problematic because (1) they represented a large amount of wasted time (a poor query
plan was selected [95]) and (2) no new information was gained (since updating an RL model with
the timed-out value would cause the model to strictly underestimate the cost of the timed-out
query [57]). Thus, a successful offline query optimizer must have a strategy for selecting timeout
values and for learning from timed-out queries.
Bayesian optimization (BO) We propose an offline query optimizer, BayesQO, that closely
mirrors recent work in computational drug discovery [64]: we use a learned encoder and decoder to
translate query plans to and from vectors (called the latent space), such that similar query plans are
mapped to nearby vectors. Then, off-the-shelf and well-studied Bayesian optimization techniques
manipulate the encoded vectors in the latent space, using query execution as a reward signal.
Existing coarse-grained techniques that generate a fixed set of plan variants for each query can be
used to initialize the process, ensuring that the best-found plan is at least as good as the best plan
in the initialization set.

We show that off-the-shelf BO techniques [76] can be easily adapted to the offline query optimiza-
tion objective (that is, finding the fastest possible plan in the least amount of time). Furthermore,
we show that the framework of Bayesian optimization enables robust learning from timeouts as
well as selecting timeouts on a learned, plan-by-plan basis. In other words, we can meaningfully
represent “query latency > 𝑥” within the learned model as a censored observation, and our model’s
confidence intervals provide a robust way of selecting timeouts to maximize information gain.
Finally, we show how cross-query information can be incorporated into BayesQO by fine-tuning a
language model to provide database-specific initialization points for the BO search process.

In our experiments, we show that offline optimization can yield 10-100x performance improve-
ments over prior learned query optimization for some queries, and we demonstrate that our
approach can find modest improvements for nearly every query in several benchmarks. Since
our system targets repetitive analytic queries, even modest gains can be significantly amplified in
practical settings. Our contributions include:
(1) We formalize the problem of offline query optimization,
(2) We implement BayesQO, an offline query optimizer that applies Bayesian optimization tech-

niques,
(3) We showhow recent developments in Bayesian optimization that accommodate high-dimensionality

and censored observations can be integrated into BayesQO,
(4) We show how fine-tuning a language model can be used to incorporate cross-query information

into BayesQO,
(5) We show that BayesQO can outperform online learned query optimization techniques in an

offline setting.

2 Related work
Query optimization is a long-standing problem in the databases community. System R [3] proposed
the heuristic query optimization scheme now used in most production databases [28], consisting
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of a cost model, cardinality estimates, and a dynamic programming search. Conventional query
optimizers are designed according to the “query optimization contract” [7], which expects query
optimizers to produce plans quickly (within hundreds of milliseconds, as the actual execution of
the plan might be very quick); this work proposed that in order to improve query optimizers, we
should consider “breaking” this contract in a number of ways, such as allowing the optimizer to
intrusively examine the base data (as opposed to keeping cheap histograms), spend a long time on
optimization, or even adaptively change the query plan during execution. We believe our work
falls into this “breaking the contract” category. Older work [53] considered amortizing the cost of
searching parts of the plan space across multiple executions, but did not consider offline execution.
Query reoptimization, perhaps the first “contract breaker,” is the task of proactively modifying or
recreating a query plan during execution, based on information found during execution, with the
overall goal of minimizing total latency [4, 51, 72].

A related concept from the compilers literature is “superoptimization” [61], in which a program
compiler, which traditionally follows a similar “contract” as a query optimizer (i.e., fast compilation
times), instead uses a large time budget to produce the best possible sequence of assembly instruc-
tions for a given program. Our work can be considered a sort of “superoptimization for query
plans.” GenesisDB [35] represents a similar effort, focusing on developing fast implementations
over relational operators, instead of entire query plans (thus, GenesisDB is mostly orthogonal to
the work presented here). Kepler [15] uses a genetic algorithm and exhaustive execution to map
the plan space for parameterized queries, which can be viewed as a type of superoptimization.
SlabCity [14] takes an approach similar to superoptimization by considering SQL-level semantic
rewrites of queries to improve performance (e.g., query simplification). Finally, DataFarm [86] and
HitTheGym [50] investigated how best to produce datasets for machine learning powered database
components, including query optimizers.
In recent years, the databases community has been increasingly engaged in applying machine

learning techniques to query optimization, including latency prediction [16, 17, 32, 59, 65, 94],
cardinality estimation [26, 38, 41, 43, 49, 68, 71, 74, 96], and cost models [79]. Other works have
attempted to either augment existing optimizers with learned components (e.g., [9, 10, 48, 56, 92, 98])
or entirely replace query optimizers with reinforcement learning (e.g., [5, 8, 39, 57, 85, 91, 95, 99, 102–
105]). Most of these works are focused on the online optimization setting: they must complete
quickly while avoiding performance regressions relative to traditional heuristic-based optimizers.
Most of these works also employ reinforcement learning, seeking to manage regret from exploring
alternatives instead of exploiting the current known-best plan. In comparison, we apply Bayesian
optimization to the superoptimization problem because we are principally concerned with finding
the query plan with the best possible latency, and ignore suboptimal plans. In the superoptimization
setting, bad plans are only bad insofar as executing them until the timeout consumes part of the
optimization time budget.
Bayesian optimization is not the only sample-efficient learning technique. For example, Neuro-

CARD [96] learns join distributions efficiently by uniformly sampling tuples from the full outer
join of all tables in a schema. Reiner et al. [74] show how domain knowledge can be incorporated
into learned models to improve sample efficiency via geometric deep learning. LlamaTune [40]
uses database documentation to accelerate DBMS knob-tuning.

While our plan encoding was inspired by work in molecular dynamics (i.e, SELFIES [44] strings
as used by Maus et al. [63]), a representation with similar goals for query plans was presented by
Reiner et al. [74]. Our approaches mainly differ in what we are trying to represent: as our format
only seeks to encode join orderings, it does not encode predicates. Furthermore, while Reiner et
al. use invariances to give joins with the same cardinality the same representation, our encoding
format may have multiple representations for the same join ordering. Further motivation for this
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design choice is given in Section 4.1. Other works have also looked at non-string representations of
queries based on graphs [74], trees [57], and recurrences [81], typically by using neural network
architectures which model these structures.
The random search heuristic we presented in Section 5 can be considered a modified version

of QuickPick [89]. While we still sample random query plans, instead of using a cost model to
evaluate their quality, we actually execute them. Such a suggestion would seem ludicrous in the
original context of [89], but for offline optimization, executing terrible query plans is not off the
table, if it eventually leads to a better plan!

Since Bayesian optimization is a relatively old technique, it may be reasonable to ask “why now?”
Recent innovations in the machine learning community have made it practical to apply Bayesian
optimization to structured (i.e. non-continuous) inputs with high dimensionality [21, 23, 64], which
was previously impossible. The key innovation that enabled this advancement was attention
transformer models [88], which allowed sequences to be efficiently and accurately mapped into
vector spaces. In the databases literature, Bayesian optimization has been most frequently applied
to tuning configuration knobs [6, 45, 101]. To our knowledge, this is the first work to apply BO
directly to the optimization of individual queries.

Perhaps most similar to this work is LimeQO [97], a system that uses offline query execution to
find the best query hint for each query in a workload. LimeQO can be viewed as a practical way of
finding an optimal Bao [56] model for a given workload. LimeQO is arguably much simpler than
the present work, requiring only linear methods (i.e., no VAE or Bayesian optimization). However,
LimeQO only considers a finite set of query hints to apply to each query in a workload, whereas
we fully construct query plans. As a result, the present work can potentially find better plans.
Additionally, LimeQO focuses on optimizing an entire workload of queries at once (i.e., considering
which queries are best to explore next), whereas we focus on optimizing only a single user-specified
query.

3 System model & problem definition
We define the offline optimization problem for database query planning and show an approach to
offline optimization based on Bayesian optimization. We implement this approach in BayesQO.
Challenges An obvious naïve strategy to perform offline optimization is to exhaustively enumerate
the space of all possible query plans. This is computationally intractable even for relatively simple
queries on few tables: the number of join orderings alone grows factorially with the number of
joined tables: for a query joining 𝑛 tables, considering only binary joins and ignoring physical
operator selection, there are 𝑛! · 𝐶𝑛 = 2𝑛!

𝑛! distinct join orderings, where 𝐶𝑛 is the 𝑛-th Catalan
number [69].
A refinement of this strategy might be to consider query planning with “perfect cardinalities,”

since cardinality estimates are often hypothesized to be the main culprit for poor query plan
performance [46]. Exhaustively computing cardinality estimates for even a simple query can take
months [68], and adaptively measuring only the cardinality estimates used by the query planner
leads to the infamous “fleeing from knowledge” problem, in which the optimizer repeatedly picks
poor query plans due to underestimation from the independence assumption [60].
Furthermore, the plan space contains numerous bad plans which, on their own, are intolerable

to execute to completion as they are many orders of magnitude slower than the optimal. Thus,
an offline optimization method must efficiently explore the space of query plans while avoiding
executing these bad plans to completion.
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Fig. 2. BayesQO workflow

It is also crucial that the optimization process use information gained from executing candidate
plans to inform its exploration. A necessary property of an offline optimization method is that it
can be run for longer in order to obtain better results.
System model Figure 2 depicts the architecture of BayesQO. First, ❶ a user identifies a query 𝑄
that they wish to optimize offline. BayesQO will then begin searching for a fast plan for 𝑄 . To do
so, BayesQO uses a Bayesian optimization loop. ❷ An initialization strategy is used to produce a
set of plans (section 4.4), ❸ which are translated into strings and embedded into a vector space
using a learned model (section 4.1). ❹ The embedded plans and their observed execution latencies
are used to initialize the surrogate model. ❺ An acquisition function is used to select a point in the
latent space (section 4.3), ❻ and then the latent space vector is decoded back to a query plan. ❼
This plan is then given a timeout value 𝑇𝑂 (𝑃), and executed against a read-only snapshot of the
database. The query either executes successfully with latency 𝐿(𝑃) < 𝑇𝑂 (𝑃), or times out. ❽ The
Bayesian optimization algorithm uses the observed latency of the new query plan to improve its
understanding of the query space. Then, the process repeats steps ❺ → ❽ until a time budget is
exhausted or the user is satisfied with the achieved latency. ❾ Finally, the best seen plan goes into
a cache.
When the query is being executed online, ❶ the user submits a query to the system. ❷ If the

query was optimized offline, the cached plan is used. Otherwise, the DBMS’ optimizer is used. ❸
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Looking at the runtime statistics of the executed plan, BayesQO decides whether the query should
be re-optimized.
Problem definition Our goal is to find a query plan 𝑃 with low latency for a query𝑄 using as few
additional resources as possible.2 Unlike traditional query optimizers, BayesQO will continuously
test new query plans until terminated. We denote the sequence of queries produced by BayesQO
at a given time 𝑡 as 𝑆𝑡 = 𝑃1, 𝑃2, . . . , 𝑃𝑛 . Let I𝑖 be an indicator such that when I𝑖 = 0, the plan 𝑃𝑖
completed successfully after 𝐿(𝑃𝑖 ), and when I𝑖 = 1, the plan 𝑃𝑖 timed out after 𝑇𝑂 (𝑃𝑖 ). The cost a
sequence 𝑆𝑡 is given by:

𝐶𝑜𝑠𝑡 (𝑆𝑡 ) =
∑︁
𝑖

I𝑖 ×𝑇𝑂 (𝑃𝑖 ) + (1 + −I𝑖 ) × 𝐿(𝑃𝑖 )

... and the best latency achieved within 𝑆𝑡 is denoted as:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑆𝑡 ) = min
𝑖

{
𝐿(𝑃𝑖 ) if I𝑖 = 0
∞ if I𝑖 = 1

Our goal is minimize latency while staying within a user-specified cost budget 𝐵:

min
𝑆𝑡

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑆𝑡 )

subject to 𝐶𝑜𝑠𝑡 (𝑆𝑡 ) < 𝐵

Difference from prior query optimizers Traditional and previous learned query optimizers
solve this problem for (very small) budgets 𝐵 (e.g. for Neo [57], 𝐵 < 500𝑚𝑠). Here, we consider 𝐵
large enough to actually execute candidate query plans. As such, optimization time is assumed to
be many times higher than the query latency.
Assumptions Our system model assumes the following about the DBMS and workload:
(1) There is a default query optimizer that produces reasonable but not globally optimal query plans

for any given query.
(2) Queries can be executed against read snapshots of the database.
(3) The execution engine can accept physical plans/hints that specify join orders and physical join

operators.
(4) Joins within queries are PK-FK equijoins.3

Why a read snapshot? BayesQO needs to execute many plans over the course of optimizing a
query, some of which may be bad plans with very large intermediate results. So as not to disrupt
the database’s currently-running workload, we assume the ability to execute queries against read
snapshots. Such read snapshots are common offerings from modern cloud providers (e.g., AWS
Redshift [2]).
Example: a trivial offline optimizer The easiest way to implement an offline optimizer in our
framework is with random plan search, similar to Quickpick [89] but ignoring cost estimates. Given
a query 𝑄 , first measure the latency of the query plan 𝑃𝑑 produced by the default query optimizer
𝐿(𝑃𝑑 ). Then, select a query plan 𝑃1 for 𝑄 at random, and execute it with timeout equal to the
latency of the best plan seen so far — initially, 𝐿(𝑃𝑑 ). Continue executing random plans up to the
budget B. While the odds of finding a better plan than 𝑃𝑑 are poor, note that you never exceed the
2Note that the constraint on time is required to make the problem non-trivial: if we have infinite computational resources,
we can simply test every possible query plan and pick the fastest one.
3This is mostly a constraint of our current implementation; future work could straightforwardly extend this technique to
support non-key or non-equijoin queries, since our core technique only needs to know which tables are involved in which
joins.
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budget B and your final plan is always at least as good as the default optimizer. We experimentally
evaluate this simple baseline in Section 5.
Cross-query learning A hidden benefit to BayesQO is that each time a query is optimized, a
large number of query plans are executed. These execution traces can be used as training data
for cross-query models. BayesQO does this by using past execution traces to fine-tune an LLM to
conditionally generate a query plan string (described in Section 4.1) for a given query. We show
experimentally that these LLM-generated plans are oftentimes reasonable starting points for future
optimizations. Thus, BayesQO creates a “virtuous cycle:” each time a query is optimized, additional
training data is collected, which can be used to fine-tune an LLM. The LLM can then generate
good initialization points for optimizing the next query, and so on. We describe our technique for
cross-query learning in Section 4.4.

4 Bayesian Optimization forQuery Plans
Bayesian optimization (BO) is a promising approach to efficiently explore the space of possible
query plans while minimizing the cost of executing extra queries against the database. BO enables
optimization of expensive-to-evaluate, black-box functions while requiring relatively few evalu-
ations of the expensive function. However, BO techniques operate over continuous, real-valued
domains, whereas query plans are discrete tree structures.
Prior work on Latent Space Bayesian Optimization (LSBO) has allowed Bayesian optimization

to be applied over other discrete, combinatorial spaces by using a deep autoencoder model (DAE)
to transform a discrete, structured search space X into a continuous, numerical one Z [12, 20, 27,
29, 37, 64, 84]. For example, Maus et al. [64] applied LSBO to problems in drug discovery using
a DAE trained on string representations of molecules. Inspired by this work, we define a string
encoding format for query plans (Section 4.1), train a variational autoencoder (VAE) on strings of
this format (Section 4.2), and perform BO in the latent space of this VAE (Section 4.3), making novel
contributions in the selection of timeouts (Section 4.3.1). Finally, we discuss different strategies for
initializing the local BO process which impact BO performance (Section 4.4).

4.1 Query Plan String Format
Our first step towards optimizing query plans with Bayesian optimization is to represent query
plans as strings. We design this language with particular properties that have been important in
prior work to perform BO over other domains [64].
Desiderata for string representations Maus et al. [64] identify two essential properties that are
key to success of a string language for LSBO. We translate those properties to query optimization,
and adopt them as requirements for our query plan language:
(1) Completeness: Any valid query plan in 𝑋 must be representable as a string using the language.

If this is not true, high-quality plans that are not representable will not be discoverable by our
optimization algorithm.

(2) Decoding validity: Any sequence of characters in the language must correspond to a valid
query plan. If points in the latent space of the DAE decode to invalid query plans, optimization
would need to be done under additional feasibility constraints, which adds unnecessary com-
plexity to the optimization problem. Validity was a primary goal of the models in both Jin et al.
[36] and Maus et al. [62].
The ideal string representation would also be injective, meaning that each unique string maps to

a unique plan [74]. We were unable to find a string representation with all three of these properties,
so we settle for a complete representation with decoding validity that is not injective, meaning
that multiple strings may map to the same plan. Taking this tradeoff is motivated by prior work:
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Maus et al. [63] showed that a string representation with only completeness and decoding validity
(SELFIES [44]) outperformed an injective representation with completeness (SMILES [90]). We
leave the investigation of alternative string representations to future work.
String language for query plansWe design an encoding format for binary-tree-structured query
plans that specifies join orders and operators (henceforth, a “join tree”). The join tree does not
encode other aspects of the query such as selections, join and filter predicates, and aggregations.
When the join tree is decoded to executable SQL, we translate the join tree to a hint string and
prepend it to the original SQL text which contains these aspects of the query. We observe that a
join tree can be unambiguously reconstructed if each non-leaf node’s left and right children and its
join operator are known; we simply need an unambiguous way to identify these subtrees.
In our encoding format, each join subtree is expressed as a 3 symbol sequence (left child, right

child, operator). Each physical join operator (ℎash,𝑚erge, 𝑛ested loops) is given a unique symbol.
The fully specified join is simply the concatenation of these sequences.

The leaves of a join tree are always the tables being joined, so we define a unique symbol for
each base table in the schema. However, we cannot define symbols for each possible join subtree, as
doing so would be tantamount to defining a unique symbol for every possible query plan. Instead,
we observe that after a table symbol is used once to specify a join subtree, it will never be used again,
as any table will only ever appear as a leaf once. Similarly, a particular non-leaf node only appears
once, so to the right of a sequence specifying a particular join subtree, all symbols composing the
join instead refer to the larger subtree.

The leftmost occurrence of a table symbol in a plan string always references the base table itself,
but subsequent occurrences represent the largest subtree that the table is part of. For example, in
a join between three tables 𝐴, 𝐵, and 𝐶 , (𝐴 ⊲⊳hash (𝐵 ⊲⊳merge 𝐶)), the valid encoding strings are
(𝐵,𝐶, ⊲⊳m, 𝐴, 𝐵, ⊲⊳h) and (𝐵,𝐶, ⊲⊳m, 𝐴,𝐶, ⊲⊳h).
For multiple occurrences of the same table under different aliases within the same query, we

rename such aliases to be numbered (e.g. movies1, movies2, ...), and we define a unique symbol in
our language per table-number pair. This requires us to choose a maximum number of possible
aliases of a single table. In our experiments we select the maximum occurrences of a particular
table within the benchmark queries.

To fulfill our second requirement, decoding validity, we use a simple trick.Wemaintain state about
the partially-specified join tree as we decode the string from left to right. If the decoder encounters
a symbol that is syntactically invalid (e.g., a table in place of a join operator) or semantically invalid
(e.g., a table that is not part of the join), the decoder deterministically resolves the symbol to a valid
one by constructing a list of all valid symbols and using the invalid symbol’s integer value as an
index into the list.

While the choice of replacement symbol is arbitrary, this scheme for ensuring decoding validity
is preferable to more obvious schemes such as refusing and resampling invalid strings or decoding
them to some default plan. Rejecting strings would prevent the Bayesian surrogate model from
learning about vast regions of the plan space. Decoding invalid strings to some default plan would
make vast regions of the space undifferentiated in performance. Our technique ensures that all
strings can be evaluated and that similar invalid strings are mapped to somewhat different query
plans.
Limitations Our language does not represent subqueries and CTEs. When processing queries that
contain such structures, they are left untouched, so the decoded query plan hint will not contain
any reference to them or to tables only occurring within them.
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4.2 Encoding & DecodingQuery Plans
While BO can be applied to various search spaces, it is most straightforward in a continuous, real-
valued domain. We train a deep autoencoder (DAE) model on these encoded strings encoded using
the format defined in Section 4.1. This process generates a latent space – a continuous, real-valued
domain that serves as a proxy for the discrete space of query plans, enabling application of BO
techniques. Intuitively, our goal for the DAE is to construct a latent space in which similar query
plans are mapped to similar vectors. This way, a search routine that finds a particularly good plan
can look at the “neighbors” of that plan in the latent space for similar plans. The notions of “similar”
and “neighbors” are both approximate: no actual neighborhoods or similarity scores are computed,
but this property is implicitly created when training the DAE.
A DAE consists of an encoder Φ : X → Z that maps from an input space X to a latent space

Z (sometimes called a bottleneck [77], as it is often lower dimensional than X in order to force a
degree of compression) and a decoder Γ : Z → X that maps from the latent space back to the input
space. We use a type of DAE known as a variational autoencoder (VAE) [42], in which the encoder
produces a distribution over latent points Φ(Z|X), and the decoder produces a distribution over X
given Z, Γ(X|Z). The model is trained by maximizing the evidence lower bound (ELBO):

EΦ(Z|X) [log Γ(X|Z) − KL(Φ(Z|X)| |𝑝 (Z)]

The learned decoder Γ : 𝑍 → 𝑋 produces string-encoded query plans given points in the latent
space. The VAE regularization (the KL term, representing relative entropy) makes the search space
smooth, facilitating more effective optimization. These components allow us to perform BO: the
surrogate model is defined over the latent spaceZ, and we evaluate the black-box function 𝑓 for
points in the latent space by decoding the point to a string using the decoder Γ and executing them
against the real database.
Training data In order to train the DAE, we compute a large set of encoded query plans (∼1
million). Our goal is to have the DAE learn a smooth probability distribution of the space of query
plans. Training strings for the DAE should be somewhat representative of the family of optimal
query plans—the purpose of this is to create a space of plans in which points that are close to each
other have similar performance characteristics. However, the space still contains points for all
possible query plans.
To generate this set of plans, we sample random PK-FK equijoin queries from the “𝑘-alias

reference graph” of the database schema. This graph contain 𝑘 nodes corresponding to each table
and edges corresponding to all PK-FK references between tables. We choose 𝑘 equal to the highest
number of aliases of the same table used in any query in the workload. From this 𝑘-alias reference
graph, we sample queries by selecting random connected subgraphs with varying numbers of
vertices. Given a particular subgraph, we produce a query joining all table aliases (subgraph nodes)
with equality join predicates for all present edges.

This process does not require any query execution, and can be done using only metadata from
the DBMS. For each sampled query, we use the existing default query optimizer (e.g., PostgreSQL)
to plan the query, encode the plan in our string encoding format, and add it to the VAE training set.
In order to expand the diversity of plans used to train the VAE, we additionally produce encoded
plans using hints [73] to the default query optimizer (e.g. disable nested loops, disable sequential
scans).

Our training data generation process makes two key design choices: (1) sampling random queries
from the database schema, and (2) generating query plans with the database’s default optimizer.
The first decision ensures that we have coverage for a wide variety of input queries. Our goal is
to train the DAE once per schema, and then reuse the DAE for every query over the schema. The
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second decision ensures that the query plans we get are somewhat reasonable. For example, the
underlying database optimizer is unlikely to pick a plan full of cross joins, and is likely to take
advantage of index structures if applicable.

4.3 Background on Bayesian Optimization
Given a query plan language and a trained DAE to translate query plan strings into vectors in a
latent space (and back), we can now optimize queries inside of the latent space using Bayesian
Optimization (BO). Intuitively, BO in our application works by learning the relationship between
the DAE’s latent space and actual query plan latency. BO learns this relationship by repeatedly
testing points sampled from the latent space. If the BO algorithm can get a good estimation of the
relationship between the latent space and query latency, then good plans can be found. This section
gives important background on the BO technique we use in this paper. Then, in Section 4.3.1, we
explain some of the small changes we made to traditional algorithms to address query optimization
specifically.
Bayesian optimization This section provides a brief overview of Bayesian optimization (BO).
For readers unfamiliar with BO, we recommend the comprehensive book by Garnett [25]. Our
methodology builds upon the approach developed by Eriksson et al. [22], with specific novel
modifications tailored for optimizing query plans and execution latency in a DBMS.
Bayesian optimization is a method for optimizing black-box functions that are expensive to

evaluate, aiming for sample efficiency. Given an input space X and an unknown objective function
𝑓 : X → R, BO seeks to find an input x∗ ∈ X that minimizes 𝑓 (x) in as few evaluations of 𝑓 as
possible. This is particularly useful when each evaluation of 𝑓 (x) is costly—for example, when
𝑓 (x) involves executing a query plan in a DBMS to measure its runtime.
BO operates by constructing a probabilistic surrogate model of the objective function, which is

iteratively refined as new data is acquired. The general optimization procedure follows these steps:
(1) Initialization: Build a surrogate model of the objective 𝑓 .
(2) Acquisition Function Optimization: Use an acquisition function to select the next point

xnext to evaluate, balancing exploration and exploitation.
(3) Evaluation: Compute the true function value 𝑓 (xnext) by decoding and executing the query

plan corresponding to xnext.
(4) Model Update: Update the surrogate model with the new observation (xnext, 𝑓 (xnext)), and

repeat steps 2–4.
To efficiently navigate the search space, BO leverages the surrogate model along with the

acquisition function to select promising candidate plans while minimizing the number of expensive
evaluations. In BayesQO, we use Thompson Sampling [82] as the acquisition function.
Local BO Standard BO methods can struggle with high-dimensional or discrete optimization
problems, such as those encountered in query plan optimization, due to the curse of dimensionality
and the combinatorial explosion of the search space. To address this, we incorporate methods from
the local BO literature, specifically TuRBO [22]. TuRBOmaintains a hyper-rectangular “trust region”
within the input space, which constrains the region from which points are sampled. By dynamically
adjusting the size and location of these trust region based on the optimization success / failure,
TuRBO can balance global exploration with local exploitation, allowing for efficient optimization
in high-dimensional spaces.4

4Though called “local BO”, this is a global optimization process that can produce results significantly different from the
initialization points. Local BO methods are the most competitive methods in high-dimensional spaces, as established in
Eriksson et al. [22].
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Right-censored observations During typical Bayesian optimization, when we make an observa-
tion at a point x, we obtain an associated objective value 𝑓 (x) = 𝑦. For a right-censored observation,
when we observe at the point x, we instead only learn that 𝑦 was greater than some threshold 𝜏 . In
our application, right-censored observations represent query timeouts: If a query x is observed
to execute for 𝜏 seconds before timing out, then we know that the true latency of 𝑞 is at least 𝜏 :
𝑓 (x) ≥ 𝜏 .
In the query optimization setting, using right-censored observations is particularly important.

Obtaining true values for arbitrary plans in the space of possible plans can be infeasible, as bad
plans may take days or even weeks. Thus, it is more efficient if we can time out plans that perform
poorly and update the surrogate model with knowledge that the running time of x is “at least as
bad as y”. Intuitively, for the purposes of finding optimal plans, it is not necessary to know exactly
how bad a particular plan is—it suffices to know that plans like it should be avoided.
BO in the presence of censored observations was first explored by Hutter et al. [34], where an

EM-like algorithm was used to impute the value of censored responses. They applied this method
to algorithm configuration, terminating any runs that exceeded a constant factor of the shortest
running time observed so far. Building on this, Eggensperger et al. [18] trained a neural network
surrogate on a likelihood based on the Tobit model to directly model right-censored observations:

𝑝 (y|f) = 𝜙 (z)1−I (1 − Φ(z))I

z =
f − 𝜇

𝜎2

𝐼 =

{
0, if y is uncensored
1, if y is censored

where𝜙 andΦ denote theGaussian density and cumulative density function respectively. In Eggensperger
et al. [18], timeout thresholds were chosen as a fixed percentile of existing observations.
Approximate Gaussian processes Because the space of query plans is large, we anticipate
needing to test a large number of query plans. As a result, we must select a surrogate model that
(1) allows for probabilistic inference, that is, gives a probability distribution at each point instead of
a simple point estimate, and (2) can scale to a large number of observations. Thus, we select an
approximate Gaussian Process (GP) model.

Approximate GP models, such as the popular Scalable Variational Gaussian Process (SVGP) [31],
use inducing point methods in combination with variational inference to allow approximate GP
inference on large data sets [30, 83]. The standard evidence lower bound (ELBO) on the log-likelihood
used to train a SVGP model is the following:

log𝑝 (y) ≥ E𝑞 (f ) [log𝑝 (y | f)] − KL(𝑞(u) | | 𝑝 (u)) (1)

4.3.1 Bayesian Optimization with Censored Observations. While previous work on Bayesian opti-
mization with censored observations (censored BO) did not use approximate SVGP [31] models, we
contribute a straightforward extension of SVGP [31] models to the censored BO setting. Starting
from Equation (1) and using the Tobit likelihood given in Section 4.3, we derive the new ELBO:

log𝑝 (y) ≥ E𝑞 (f ) [log𝑝 (y | f)] − KL(𝑞(u) | | 𝑝 (u))
= E𝑞 (f ) [log𝜙 (Z)1−I (1 − Φ(Z))I] − KL(𝑞(u) | | 𝑝 (u))
= E𝑞 (f ) [log𝜙 (Z)1−I + log(1 − Φ(Z))I] − KL(𝑞(u) | | 𝑝 (u))
= E𝑞 (f ) [log𝜙 (Zu)] + E𝑞 (f ) [log(1 − Φ(Zc))] − KL(𝑞(u) | | 𝑝 (u))
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Here, Z𝑢 correspond to f−𝜇
𝜎2 values for uncensored observations, and Z𝑐 correspond to censored

observations. The first term can be computed analytically as in standard SVGP models. The second
term, E𝑞 (f ) [log(1 − Φ(Zc))], can be computed using one dimensional numerical techniques like
Gauss-Hermite quadrature.

During optimization, we select a threshold 𝜏 for each executed query plan x, and cut off execution
once the running time exceeds 𝜏 . This results in right-censored observations. Selecting the timeout
for any given observation is crucial: selecting too low of a timeout deprives BO of important
knowledge about the space of plans, whereas selecting too high of a timeout wastes time executing
bad plans. Previous work in BO uses a constant multiplier over the best observation seen so far [33],
or a fixed percentile across all observations [19]. Balsa [95] also uses a fixed multiplier in order to
bound the impact of executing bad plans.We use an uncertainty-basedmethod for selecting timeouts
that, compared to prior work, ensures that the surrogate model will be sufficiently confident that a
particular point is suboptimal before timing out.

Before evaluating a new candidate query plan x𝑡 during step 𝑡 of optimization, we dynamically
set a new timeout threshold 𝜏𝑡 . We select thresholds so that, after conditioning on the right-censored
observation (x𝑡 , 𝜏𝑡 ), we are confident that the best query plan observed so far, x∗𝑡 , is still a better
design than the candidate plan x𝑡 . Because we do not want to waste additional running time
evaluating 𝑓 (x𝑡 ), we ideally want the smallest such 𝜏𝑡 .

Selecting 𝜏𝑡 . The above discussion leads to the following optimization problem of finding the
smallest threshold 𝜏 so that our incumbent is confidently better than x𝑡 after conditioning on (x𝑡 , 𝜏):

𝜏∗𝑡 = argmin𝜏
s.t. 𝑦∗𝑡 ≤ 𝜇′𝑡 (𝜏) − 𝜅𝜎 ′

𝑡 (𝜏)
On its surface, this optimization problem is challenging, as evaluating our constraint for a

given 𝜏 involves updating the Gaussian process surrogate model with that value 𝜏 as the observed
timeout. This is similar to other acquisition functions in the Bayesian optimization literature that
use fantasization to do lookahead, e.g., knowledge gradient [24].

Because we use variational GPs, there are several inexpensive strategies that we can use to evalu-
ate the constraint. For example, Maddox et al. [54] recently proposed an efficient routine for online
updating sparse variational GPs, both with conjugate and non-conjugate likelihoods. Alternatively,
a few additional iterations of SGD can be used to update the model in a less sophisticated way.

Finally, we note that the value of 𝜇′𝑡 (𝜏) −𝜅𝜎 ′
𝑡 (𝜏) should generally be monotonic in 𝜏—fantasizing

that x𝑡 is cut off with a larger threshold should strictly increase the gap between our belief about 𝑦𝑡
and 𝑦∗𝑡 . Therefore, given a routine to cheaply evaluate the constraint, the constrained minimization
problem over 𝜏 can, for example, be solved with binary search.

4.4 Initialization Strategies
The initial step of BO typically involves selecting points within the latent space using the acquisition
function. As the surrogate is initialized with a random prior, this amounts to selecting random
points within the latent space. Theoretically, given sufficient time for BO execution, this approach
would yield optimal results. However, to improve the practicality of BO within high dimensional
spaces, it is helpful to initialize the process with a small number of precomputed (x, 𝑓 (x)) pairs
representing high-quality plans. We explore multiple methods of generating these initialization
points.
Hinted plans (Bao)We can leverage an existing traditional query optimizer that accepts hints,
such as PostgreSQL, to generate the initialization points. We exhaust all of the combinations of
join and scan hints (as in the hint sets used by Marcus et al.’s Bao [56] optimizer) to produce 49
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initialization points for each query. These 49 initialization points are guaranteed to contain the best
plan that could have possibly been chosen by Bao.
The default optimizer plan A simpler strategy would be to generate a single optimization point
by using the DBMS’ underlying optimizer. This approach has the advantage of simplicity, since the
underlying DBMS almost surely has an optimizer. Unfortunately, we found that this approach does
not work well in practice, mostly because initializing BO with a single initialization point seems to
be suboptimal [64].
LLM Inspired by previous work demonstrating the effectiveness of large language models (LLMs)
in optimizing program runtimes [78], we explore the use of fine-tuned LLMs for generating
initialization points. We collected trajectories from 606 BayesQO runs, selecting the top-1 and
top-5 query plans for each query to construct a fine-tuning dataset. Using this dataset, we fine-
tuned GPT4o-mini for one epoch. For each new query, we use the fine-tuned model to sample 50
initialization points. This approach leverages the model’s ability to learn patterns from previous
optimization runs, potentially producing high-quality plans that outperform those generated by
traditional query optimizers. Our evaluation (section 5.6) demonstrates that this LLM-based strategy
can often produce the best query plan among all initialization strategies considered here.
Extensibility BayesQO simply admits sets of initialization pairs (𝑥, 𝑓 (𝑥)), so any strategy can
be used to generate these pairs. As such, our approach can incorporate future improvements in
traditional or learned query optimization techniques.

4.5 Random plans
Though not related to BO, we implement random plan search, which can be thought of as a com-
pletely exploration-based algorithm. The intuition behind this method is that joins are commutative
but that cross-joins are generally bad for performance. This strategy samples random plans from
the space of all plans that do not contain any cross joins.
Given a particular query over a set of table aliases, we construct the subgraph of the schema’s

alias-𝑘 reference graph containing only the table aliases referenced in the query. From this query
graph, we can construct a random join tree by constructing a spanning tree. Whenever an edge is
added to the spanning tree, we add the join between the two newly connected components to the
join tree. Physical join operators are selected uniformly randomly.

One potential benefit of utilizing this strategy is that its viability implies that it may be possible
to perform offline optimization in the absence of a traditional query optimizer. As we show in
Section 5, this strategy can be used on its own to perform offline optimization.

5 Experiments
We sought to answer the following research questions about BayesQO:
RQ1. How effectively does BayesQO reduce query latency for a workload given a certain time

budget? (Section 5.2, Section 5.3)
RQ2. How important are our modifications to Bayesian optimization to the performance of

BayesQO? (Section 5.4)
RQ3. How robust are plans generated by BayesQO to data drift? Can previously optimized plans

help jump-start reoptimization? (Section 5.5)
RQ4. Can we train an LLM from offline optimization results to generalize to unseen queries?

(Section 5.6)

5.1 Setup
We evaluate BayesQO over four sets of queries:
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Name Size on Disk Queries Median joins per query
JOB 8GB 113 7
CEB 8GB 234 10
Stack 64GB 200 6
DSB 89GB 90 5

Table 1. Characteristics for the four evaluation workloads.

(1) JOB: The entire Join Order Benchmark (introduced by Leis et al. [47]), which consists of 113
queries over the IMDB dataset.

(2) CEB: A subset of the Cardinality Estimation Benchmark (introduced by Negi et al. [68]), which
consists of ∼ 3000 queries across 16 query templates over the IMDB dataset. We select the top
100 and bottom 100 queries by improvement of the optimal hint set vs. the PostgreSQL default
plan, as well as the 100 queries with longest-running PostgreSQL default plans. There is some
overlap between these categories, resulting in 234 total queries representing 13 templates.

(3) Stack: A subset of the StackOverflow benchmark (introduced by Marcus et al. in “Bao” [56]),
which consists of ∼ 6000 queries divided across 16 query templates. We selected the longest-
running queries from each template in equal proportion (excluding templates consisting entirely
of queries that took less than 1 second), producing a list of 200 queries.

(4) DSB: 3 generated queries from each of 30 templates, based on TPC-DS but enhanced with
more complex data distributions and query templates (introduced by Ding et al. [13]). We use
generated queries from the “agg” and “spj” template sets. Following Wu et al. [93], we use a
scale factor of 50.

Workload characteristics are summarized in Table 1.
The offline query planning setting has not received much attention in the query optimization

literature. To our knowledge, this work is one of the first to demonstrate an offline optimization
technique. As such, we compare plans generated by BayesQO to plans from PostgreSQL, Bao [56],
Balsa [95], and the random non-cross-join plan generation technique described in section 4.5,
which we refer to as Random. The Random strategy can be seen as representing the gains from
performing offline optimization at all, and we use it to understand whether our technique brings
further improvement when rethinking the query optimization contract [7].
Instead of actually running Bao, we instead execute all hint sets (49 total, comprised of all

combinations of join and scan hints) and take the hint set with the fastest runtime. This is the
best plan that Bao could ever produce, since it focuses on steering PostgreSQL’s existing optimizer
using hints. We choose this baseline as representing the best that traditional heuristic-based query
optimizers can do in the offline query optimization setting. Unless stated otherwise, all BO runs in
the following section are initialized using these 49 hinted “Bao” plans and runtimes.
We choose Balsa [95] as a baseline representing reinforcement learning-based systems, which

are also not originally designed for the offline query optimization setting. We use the default
configuration for Balsa, except that we set 𝑆 = 1.5 (the multiplier on query timeout values), which
we found to universally improve results in our experimental setup. We note that the comparison
to Balsa is not entirely fair: as a reinforcement learning-powered query optimizer, Balsa seeks to
minimize regret, whereas our BO-based approach seeks to minimize the best latency found. This
distinction is illustrated in Figure 1, but the most important experimental consequence is that Balsa
will occasionally repeat a query plan that it considers to be “good” in order to maximize reward,
which is obviously suboptimal in an offline optimization scenario. In these experimental results,
we use a plan cache to avoid actually executing any exactly-duplicated query plans.
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Latent Dimension Reconstruction Accuracy
128 97.93%
64 89.67%
32 58.71%
16 24.79%
8 8.49%

Table 2. VAE reconstruction accuracy on the validation set at different latent dimensions, higher is better.

Random can be thought of as an offline optimization technique that purely explores the space
of possible plans. It learns from feedback only insofar as it decreases the time spent on bad plans
by settings its timeout to the runtime of the best plan seen (as, unlike with BO, there is no point
in executing plans worse than the best-seen). The initial timeout greatly affects how many plans
can be tried within a given time budget, as a lower timeout results in more plans tried within a
particular time period, but we do not know a priori what the runtime of the fastest possible plan is.
We initialize the Random plan generation process with the PostgreSQL default plan runtime as the
initial timeout.

All queries are executed against PostgreSQL version 16.3. For all workloads, we disable JIT and
set join_collapse_limit to 1. Physical operator hints are specified using pg_hint_plan. We
configure PostgreSQL with 32GB shared buffers and 16MB work memory. For the Stack queries,
we disabled GEQO as it was causing high variability in plan performance.

We create indexes on all join keys on the IMDB, Stack, and DSB datasets. For Stack, some tables
have compound join keys. We build all indexes such that for each set of join predicates between
two tables present in all queries in the workload, an index exists containing all of the referenced
columns on each side.

Our VAE is based on the transformer VAE architecture introduced in [64]. For each database, the
set of training query plans were divided into an 80%/20% train-test split, over which the VAE was
trained for 800, 000 steps. To determine an appropriate latent space size, VAEs were trained with
varying latent dimensionality on the IMDB dataset to evaluate the trade-off between compression
and reconstruction, results of which are shown in Table 2. A latent space of 64 dimensions was
chosen as it represented a good balance between latent dimension and reconstruction accuracy.
Each VAE was trained on 2 Ampere A6000s for ∼ 24 hours. On the GPU cloud that we were using,
this cost roughly $24 for each VAE.

5.2 Plan Optimization
In order to answer RQ1., we executed each of our baseline optimization techniques for several
hours for each query in each of our three workloads. Figure 3 visualizes the results at the end of
optimization for BO, Balsa, and Random across our three workloads by comparing the cumulative
distribution of queries that achieve at least a certain percentage improvement in plan runtime
compared to Bao. “% improvement over Bao” refers to the percentage reduction in plan runtime for
a certain query compared to the runtime of the optimal Bao plan (e.g. a reduction in runtime from
1 second to 200 milliseconds would be an improvement of 80%). The visual separation between
the series for the different techniques trending towards the top right of each plot indicates gaps in
performance in which one technique is finding plans for more queries with better performance
than another technique.

We strove to make comparisons between techniques fair by giving each optimization technique
the same optimization budget, since offline optimization techniques can hypothetically be executed
for an indefinite amount of time to find potentially faster plans. We only considered time spent
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Fig. 3. Best plans found at the end of optimization with each technique for each workload. Towards the
top right corner is better. ❶ On each workload, Random fails to find any improvement over the best Bao
plan for 30-50% of queries. ❷ BayesQO always finds the most improvement compared to the other methods,
with this difference being more pronounced on JOB and Stack than on CEB. On Stack, BayesQO finds over
2× improvement on 50% of queries. ❸ Balsa underperforms when used as an offline optimizer on Stack due
to longer query runtimes limiting exploration by the RL algorithm. ❹ BayesQO finds improvement on the
~25% of Stack queries where the other two techniques find none.
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Fig. 4. Case studies showing optimization time vs. plan performance for individual queries. Lower is better.

executing proposed plans against the database as consuming budget and exclude the overhead of
executing each technique (the overhead for BayesQO is analyzed in Section 5.7). Each optimization
technique was executed for 4000 plan executions. We choose this because query runtimes span
from tens of milliseconds to tens of seconds, and we did not want to optimize some queries with
1000× more observations than others.

These plots make obvious the fact that BayesQO is finding more plans with better performance
compared to the baselines across all three workloads. JOB and Stack are highly differentiated, while
all techniques perform similarly on CEB. DSB is notable in its proportion of queries for which no
technique finds much improvement over Bao, but for those queries where improvement can be
found, BayesQO is moderately differentiated from the baselines.

5.3 Case Studies
We select three queries from the optimization workloads to illustrate the different optimization
outcomes for BayesQO. The optimization runs for these three queries are visualized in Figure 4. All
three plots visualize the runtime of the best plan found so far over the course of an optimization
run across all of the optimization techniques. Bao is visualized as a horizontal line showing the
runtime of the best plan because it cannot improve after its hint sets are executed. The light blue
“Bayes (latest)” line illustrates the runtime of the plan run most-recently by BO, hence its constant
fluctuation as BO explores the space of possible plans. The 𝑥 axis in each of these plots captures
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Fig. 5. Ablation study of our novel BO scheme.

cumulative execution time on the database and ignores time spent in the rest of the optimization
algorithms such as plan proposal and model updates.

In Figure 4a, we highlight a case where the advantages of BO are most obvious. In the first hour,
BO is exploring the space immediately around its initialization points, executing plans for slightly
longer than the best Bao initialization due to uncertainty-based timeouts. Around 1.5 hours into
the optimization run, it finds a plan within a trust region that has substantially better performance
and rapidly exploits this new information by trying nearby plans. Note that in most of the queries
made afterwards, timeouts are lowered to be closer to the new optimal as the BO surrogate model
no longer needs to know if plans are much worse than the new optimal. We also note that neither
Random nor Balsa manages to find a plan better than the Bao optimal.
In Figure 4b, all optimization strategies converge to the same best plan runtime after several

hours of execution. BO takes notably longer than Random and Balsa to find this plan. That Random
finds an optimized plan so quickly suggests that the space of possible plans contains many good
plans that perform approximately this well, but they may be quite different from the initialization
points given to BO. We also note that despite the fact that we give Balsa training examples including
the Bao optimal plan, it begins its search with plans that are considerably worse before eventually
passing the Bao optimal.
Figure 4c shows a query for which all techniques converge relatively quickly to the same plan

runtime and do not make any progress afterwards. We note that this optimized plan executes
in 2ms, which is short enough to be indistinguishable from noise in our experimental setup. We
observe that Balsa takes the longest time to arrive at this plan whereas the other techniques find it
nearly instantly, which we take as further evidence of the unsuitability of RL-based algorithms for
offline optimization. The plateaus in Balsa’s progress occur when it is exploiting its best known
plan in order to minimize regret instead of trying to find a faster plan.

5.4 Timeout Ablation Study
To answer RQ2., we justify our usage of a novel timeout strategy, as well as the choice to perform
local BO based on trust regions, 5 via an ablation study visualized in Figure 5. As described in
Section 4.3, we utilize timeouts in order to manage the impact of executing terrible plans that take
many orders of magnitude longer to execute than the optimal plan, wasting optimization budget
for little gain.
In Figure 5a, we show the results of using different timeout schemes when optimizing a single

JOB query. Intuitively, using timeouts longer than the runtime of the current best-seen plan (i.e.
the 0th percentile timeout) allows the surrogate model to learn more about regions of the space

5Which, despite the name, is a global optimization scheme: see Section 4.3.
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of plans that it is less certain about. Since we use censored observations, two plans (and their
surrounding regions of plan space) will look exactly the same if they both timed out after 1 second,
even if one plan would have executed for 1.2 seconds and the other for 2 hours. By using longer
timeouts, the surrogate model gains greater confidence in whether a particular region of the space
is still promising to explore or if it is clearly terrible. As shown in the plot, our uncertainty-based
method for determining the timeout threshold results in BO finding faster plans while consuming
less optimization budget. In fact, using the best-seen runtime as the timeout causes BO to find
the worst plan by the end of optimization, perhaps due to the artificially low timeout uniformly
discouraging BO from exploring the space of plans.

We also justify the choice to use trust region-based local BO instead of global BO by performing
another ablation, shown in Figure 5b. Our choice to represent the space of plans via the latent space
of a VAE comes at the cost of high dimensionality (64). Though it is possible in principle that local
BO will miss globally optimal plans, in our experiments we find that local BO initialized with plans
derived from the PostgreSQL optimizer can find highly-optimized plans for many queries. In the
ablation plots, we can see that even after many hours of optimization, global BO does not catch up
to the quality of plans found by local BO due to the exponentially larger space of plans that it must
explore.

5.5 Data Drift After Optimization
In order to model data drift, we modified the StackOverflow dataset by deleting all rows in all tables
with timestamps after 2017, as well as the transitive closure of all rows whose foreign keys became
invalidated as a result of deleting those rows. This reduced the overall dataset size by roughly
20%, with individual tables decreasing in row count between 0% and 28%. This deletion effectively
restored the database to a snapshot from the end of 2017, while the original StackOverflow dataset
snapshot was taken in late 2019. We present this two year shift as a worst-case scenario for data
drift, expecting that if plan performance were to degrade due to data drift, it would degrade more
over a longer period of time. For the rest of this section, we will refer to this 2017 snapshot as the
“past” and the original 2019 snapshot as the “future”.

We sought to answer three questions about the impact of data drift:

RQ3.1. How do the past plans perform in comparison to plans produced by reoptimizing from
scratch on the future dataset?

RQ3.2. Is it important to retrain the VAE for the future dataset before performing BO?
RQ3.3. Does including the past plan as an initialization point in the future BO process speed up

optimization?
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To answer RQ3.1., we trained a VAE for the past dataset using the procedure described in
Section 4.2, planning the sampled queries using PostgreSQLwith the past dataset, akin to conducting
the full BayesQO offline optimization process in the past. We then performed BO against the past
dataset using this past version of the VAE and a reduced set of 50 (out of our original 200) queries. We
then took the past query plans and executed them against the future dataset, effectively simulating
the real-world use case of continuing to use previously optimized query plans well past when data
drift may have rendered those plans suboptimal.

The results of executing these past plans against the future dataset are visualized in the left plot
of Figure 6. We compare past plans against the Bao optimal plans for the future dataset and the
future plans produced by BO from our initial experiment. We also compare them to the results of
performing BO for a short time (about 1 hour) initialized with the past plan in addition to the Bao
plans, discussed further below. Despite the substantial data drift, past plans perform about as well
as if we had performed BO for the first time on the future dataset and continue to perform much
better than the best Bao hint. This suggests that the optimality of most of the plans found by BO is
not affected much data drift.

We also executed these past and future plans on dates in between the “past” and “future” endpoints,
shown in Figure 7. For the vast majority of queries, there is not a significant difference in runtime
between the past and future plans, but as shown by the dramatic increase in runtime of the
longest-running past plan, it is indeed possible for data drift to render a plan suboptimal.
To answer RQ3.2., we performed a set of BO runs against the future dataset using the VAE

trained on the past dataset, simulating the real-world use case of attempting to perform offline
optimization in the future without retraining the VAE. The results are visualized in the middle
plot of Figure 6. We observe that keeping the VAE up-to-date has a non-negligible effect on the
optimality of plans found by BO. Given the small cost of training the VAE compared to the rest of
the BO process, it seems worthwhile to periodically retrain the VAE to account for data drift.
To answer RQ3.3., we performed a set of BO runs against the future dataset initialized with

both the Bao initialization and the optimized past plan, simulating reoptimization when a query
had previously been optimized in the past. For these BO runs, we used the VAE trained on the
future dataset. The aggregate results in red for reoptimization in the left plot of Figure 6 show not
only that reoptimization to account for data drift is viable, but that it tends to produce the best
plans across the entire workload. In the right side of the same figure, we observe that the BO runs
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Fig. 8. Top: LLM trained on plans of the same template. Bottom: LLM trained on plans not of the same
template. Lower (more blue) is better.

converge to optimized plans much more quickly than a run started from scratch. Reoptimizations
ran for an average of 1.5 hours compared to from-scratch optimization runs, which ran for an
average of 8.2 hours. This suggests that plans generated by BayesQO can be brought up-to-date
to account for data drift while consuming much less optimization budget than the initial offline
optimization run.

5.6 Few-Shot LLM from BO Results
As a byproduct of performing this experimental evaluation, we generated plans that, to our knowl-
edge, are the best plans that can currently be found for the queries in our evaluation workloads.
We hypothesized that a large language model fine-tuned using these high-quality plans could
potentially be a better few-shot plan optimizer than existing techniques. Here, we evaluate the
LLM’s ability to generate initialization points for BayesQO and defer offline optimization initialized
using the LLM outputs to future work.
In order to answer RQ4., we performed two experiments. In the first experiment, visualized

in the top plot of Figure 8, we fine-tuned GPT-4o mini on the fastest 10 optimized plans for each
query from running BO on the CEB workload as described in Section 4.4. This training set included
queries from all query templates present in the workload. We then compared the best runtime out
of 50 plans (giving it as many plans as Bao) per-query generated by the LLM for a particular query
against the runtime of the optimal Bao plan.
In the second experiment, we performed the same process, but withheld BO results from two

query templates from the fine-tuning process. We then performed the same test, comparing the
best runtime out of 50 plans per-query from the LLM against the optimal Bao plans. The results are
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visualized in the bottom plot of Figure 8. The LLM clearly does not perform as well when it has not
been fine-tuned with results from the same query template.

5.7 BayesQO Overhead
We measured the overhead of running BayesQO under multiple conditions in order to better
understand its resource requirements and to determine if a GPU is necessary to perform optimization.
We recorded time spent in each part of the optimization loop when executing the BO components on
both CPU and GPUwhile varying the number of simultaneous BO runs. The results are visualized in
Figure 9. We find that with only one BO run, while overhead on a CPU is worse than on a GPU, the
absolute time spent on overhead (i.e., everything but query execution) is in the single-digit seconds
range. For sufficiently long-running queries, this CPU overhead may be tolerable. However, even
with just 5 simultaneous runs, we note that VAE sampling scales significantly better on GPUs than
CPUs – this is attributable to the GPU’s hardware support for scaled dot product attention [11].

5.8 Comparison to LimeQO
LimeQO [97] is another work that performs offline optimization for repetitive workloads, but
LimeQO chiefly differs from BayesQO in that its potential optimizations are limited to finding
optimal hints from a small set, whereas BayesQO constructs entire join orders. LimeQO uses the
hint sets from Bao [56], which BayesQO also uses to initiate the Bayesian optimization process. As
shown in Figure 10, both techniques explore all of the Bao hints: once LimeQO has exhausted all of
the hints, there are no remaining avenues for further optimization, whereas BayesQO continues
exploring and finds better plans.

6 Conclusion
In this work, we presented BayesQO, an offline learned query optimizer. BayesQO uses modern
Bayesian optimization techniques to search for fast query plans for important repeated queries.
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Experimentally, we show that BayesQO was able to optimize nearly every query in a set of common,
non-synthetic benchmarks, sometimes achieving multiple orders-of-magnitude improvements.

In the future, we plan to integrate BayesQO into a wider variety of database systems. Given the
promising results from our LLM experiment, we plan to investigate how we can “close the loop,”
using the LLM to generate initialization data for future optimization runs. We are also excited to
examine how Bayesian optimization can be applied to other databases problems such as automatic
index selection, data layout, and benchmark curation.
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